

US006403935B2

(12) United States Patent

Kochman et al.

(10) Patent No.: US 6,403,935 B2

(45) **Date of Patent: Jun. 11, 2002**

(54) SOFT HEATING ELEMENT AND METHOD OF ITS ELECTRICAL TERMINATION

(75) Inventors: Arkady Kochman, Highland Park;

Mikhail Lavit, Itasca; Dmitry

Kochman, Vernon Hills, all of IL (US)

(73) Assignee: Thermosoft International

Corporation, Buffalo Grove, IL (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 09/793,485
- (22) Filed: Feb. 27, 2001

Related U.S. Application Data

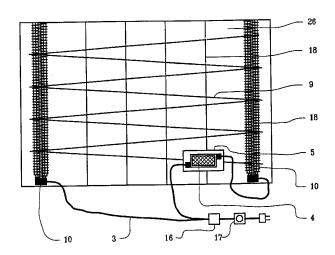
- (63) Continuation-in-part of application No. 09/309,917, filed on May 11, 1999, now abandoned.
- (51) **Int. Cl.**⁷ **H05B 3/34**; H05B 3/54
- (52) **U.S. Cl.** **219/545**; 219/212; 219/529; 219/540

(56) References Cited

U.S. PATENT DOCUMENTS

1,703,005	A	2/1929	Hewitt
2,496,279	A	2/1950	Ely et al.
3,349,359	A	10/1967	Morey
3,385,959	A	5/1968	Ames et al.
3,657,516	A	4/1972	Fujihara
3,774,299	A	11/1973	Sato et al.
3,935,422	A	1/1976	Barnes et al.
4,149,066	A	4/1979	Niibe
4,250,397	A	2/1981	Gray et al.
4,309,596	A	1/1982	Crowley
4,538,054	A	8/1985	De La Bretoniere

4,713,531	A		12/1987	Fennekels et al.
4,764,665	Α		8/1988	Orban et al.
4,825,049	Α		4/1989	Rickborn
4,969,840	Α	*	11/1990	Ii et al 439/352
4,983,814	Α		1/1991	Ohgushi et al.
5,023,433	Α		6/1991	Gordon
5,068,518	Α		11/1991	Yasuda
5,298,722	Α		3/1994	Tanaka
5,412,181	Α		5/1995	Giamati
5,801,914	Α	*	9/1998	Thrash 219/212
5,824,996	Α	*	10/1998	Kochman et al 219/529
5,861,610	Α	*	1/1999	Weiss 219/212
6,031,214	Α		2/2000	Bost et al.
6,229,123	B 1	*	5/2001	Kochman et al 219/529


^{*} cited by examiner

Primary Examiner—Tu Ba Hoang (74) Attorney, Agent, or Firm—Liniak, Berenato, Longacre & White

(57) ABSTRACT

A soft heating element, utilizing electro conductive textile threads as a heating means having additional safety functions as TCO (thermal cut-off) and TSL (temperature selflimiting) devices. The thermal cut-off function is achieved through melting of the electro conductive threads at the temperatures above 120° C. and below 350° C., which results in termination of electrical continuity in the heating element. The temperature self-limiting capability is achieved through a heating thread electrical resistance increase during slow elevation in its temperature, which is below its melting point. Methods of electrical and mechanical connection between heating threads and metal conductors, utilizing winding of connections with flexible strands of fibers or wires, with optional subsequent placement of a rigid mechanical fastener over the winding. Method of providing electrical redundancy of heating circuits by stitching, laminating, weaving or knitting an electrically conductive thread across the multiple runs of the heating thread.

29 Claims, 7 Drawing Sheets

